圆的面积教学设计义务教育课程标准实验教科书第十一册P69~71例1、例2。【教学目标】1、认知目标使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识下面是小编为大家整理的圆的面积教学设计5篇,供大家参考。
圆的面积教学设计篇1
义务教育课程标准实验教科书第十一册P69~71例1、例2。
【教学目标】
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。
【教学难点】:理解圆的面积计算公式的推导。
【教学准备】:相应课件;圆的面积演示教具
【教学过程】
一、情境导入
出示场景——《马儿的困惑》
师:同学们,你们知道马儿吃草的大小是一个什么图形呀?
生:是一个圆形。
师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?
生:圆的面积。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高 。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个 近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决问题
1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。
预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
3.求下面各圆的面积。
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
[设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]
四、课堂作业
1、教材P69页“做一做”第2小题。
2、判断题
让学生先判断,并讲一讲错误的原因。
3、填空题
复习圆的半径、直径、周长、面积之间的相互关系。
4、教材P70页练习十六第2小题。
5、完成课件练习(知道圆的周长求面积)
老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。
五、课堂总结
师:同学们,通过这节课的学习,你有什么收获?
六、布置作业
圆的面积教学设计篇2
教学目标
(1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
(2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。
(3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。
教学重难点
教学重点:组合图形的认识及面积计算。
教学难点:对组合图形的分析。
教学工具
多媒体课件,各种基本图形纸片
教学过程
一、创设情境,谈话引入
同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)
师:这些图片的设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)
师:这些不同的几何图形拼在一起能构成精美的图案,给我们以美的享受,这说明我们的数学和现实生活联系密切。今天,我们就来学习会有圆的组合图形的面积。(板书课题)二、提出问题,自主探究
1、教师出示例3的两幅图并出示自学提示出示自学提示:
(1)上面两幅图有什么不同之处?
(2)右图中的正方形的对角线和圆得直径有什么关系?
(3)上图中两个圆的半径都是r,你能求出正方形和圆之间的半部分的面积吗?
2、请同学们带着问题认真阅读P69-70页的内容,独立思考自学提示中的问题,若有困难可以小组内讨论。(自学时间:4分钟)三、师生联动,合作探究1、汇报交流,师生互动
生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。
生汇报问题(2):右图中的正方形的对角线和圆得直径相等。
生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:S正=2×2=4(m2 ) S圆=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左图:圆的面积减去正方形的面积( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )
师:同学们做的很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:
左图;(2r)-3.14r =0.86r
右图:3.14r-( 1/2 ×2r×r)×2=1.14r当r=1m时,和前面的结果完全一致
答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是1.14m。
四、总结引导,知识生成这节课你有什么收获?
师顺便对生进行德育教育:在我们今后的人生道路中,我们为人处事,必须能屈能伸,可方可圆,外在大度圆融,内在正直公正。五、科学训练,提高能力1、出示教材P70做一做2、完成教材P72第9题六、堂清作业
七、作业布置P73第10、11、
课后小结
这节课你有什么收获?
课后习题
1、出示教材P70做一做
2、完成教材P72第9题
板书
含有圆的组合图形的面积
左图:S正=2×2=4(m2 )右图:( 1/2 ×2×1)×2=2(m2 )
S圆=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )
4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )
圆的面积教学设计篇3
教材分析:
圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。教材将理解“化曲为直”的转化思想贯穿在活动之中。通过一系列的活动将新的数学思想纳入到学生原有的认知结构之中,从而完成新知的`建构过程。学好这节课的知识,对今后进一步探究“圆柱圆锥”的体积起着举足轻重的作用。
【教学目标】
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
【教学重点】
探索并掌握圆的面积公式。
【教学难点】
探索推导圆的面积公式,体会“化曲为直”思想。
【教具准备】
投影仪,多煤体课件,圆形纸片。
【学具准备】
圆形纸片。
【教学设计】
一、创设情境。提出问题
(投影出示p16中草坪喷水插图)这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、探究思考。解决问题
1、估计圆面积大小
师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)——————
2、用数方格的方法求圆面积大小
①投影出示p16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
②指明反馈估算结果,并说明估算方法及依据。
1、根据圆里面的正方形来估计
2、用数方格的方法来估计。
三、探索规律
1、由旧知引入新知
师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?(学生回答,教师订正。那么圆形的面积可由什么图形面积得来呢。
2、探索圆面积公式
师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
指名汇报(学生在说的同时教师注意板书)
请大家来观察一下刚才拼成的哪个图形更接近长方形呢?[等分为32份的更接近长方形。]
想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?[等分的份数越多,就越接近长方形。]
观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)
因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。
因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。
用字母怎么表示圆面积公式呢?
s=∏rr还可以写作s=∏r2
师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。
3、应用圆面积公式
根据下面的条件,求圆的面积。
r=6厘米d=0、8厘米r=1、5分米
师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。(学生独立解答,指名回答)
四:拓展应用
习题设计:
1、填空:
(1)圆的周长计算公式为( ),圆的周长计算公式为( )。
(2)一个圆的半径是3厘米,求它的周长,列式( ),求它的面积,列式( )。
(3)一个圆的周长是18.84分米,这个圆的直径是( )分米,面积是( )平方分米。
2、判断:
(1)半径是2厘米的圆,周长和面积相等( )[让孩子知道得数虽然相同,但计量单位不同,不能进行比较。]
(2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14x1.52=3.14x3=9.42平方厘米。( )。[此题在计算1.52的时候把1.52看作1.5x2,而1.52=1.5x1.5]
(3)直径相等的两个圆,面积不一定相等。( )
(4)一个圆的半径扩大3倍,面积也扩大3倍。( )
(5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。( )
3、实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?
4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
(1)可测圆的半径,根据s=πr2求出面积。
(2)可测圆的直径,根据s=π(d/2)2求出面积。
(3)可测圆的周长,根据s=π·(c/2π)2求出面积。
实践练习:
圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?[让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。]
圆的面积教学设计篇4
九年义务教育六年制小学教科书《数学》第十一册,圆的面积。
圆的面积教学设计篇5
一、内容简介及设计理念
本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。
本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。
第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。
二、教学目标:
1、经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆的面积计算公式计算圆的面积。
3、在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。
三、教学重点和难点:
圆的面积计算公式的推导。
四、教学准备:
圆形纸片、剪刀、多媒体课件等。
五、教学过程:
教学过程教师活动学生活动
一、谈话引入,揭示课题
二、探究新知。
1、第一次探究,明确思路,体会“转化”的数学思想方法
2、第二次探究,明确方法,体验“极限思想”
3、第三次探究,深化思维,推导公式。
4、解决问题
5、小结
三、知识应用(出示一个圆)大家看,这是什么图形?
师:你已经掌握圆的哪些知识?
师:关于圆你还想探讨什么?
(板书课题:圆的面积。)
师:谁能摸一摸这个圆片的面积。
师:那这个圆的面积怎么求呢?(学生沉默),请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?
师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。
在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。
师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。
师:噢,你想把圆转化成我们学过的三角形来求它的面积。
师:谁还有不同的方法?
师:这像我们学过的什么图形?
师:你想把圆转化成平行四边形来求它的面积,是不是?
师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。
师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。
师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。
师:为什么要折这么多份?
师:你们同意吗?这就是把圆折成16份时其中的一份(贴在黑板上),和刚才平均分成4份中的一份相比,确实像三角形了。如果想让折出的形状更接近三角形,怎么办?
师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)
师:你发现了什么?
师:如果分的份数再多呢?请大家闭上眼睛想象一下,如果把圆平均分成64份、128份……分的份数越来越多,那其中的一份会是什么形状?
师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。
师:这个方法还真不错,这个小组把圆剪成8份(把这个小组的作品贴在黑板上),和刚才剪成4份拼成的图形相比,有什么变化呢?
师:能让拼成的图形更接近平行四边形吗?
师:哪个小组分的份数更多?
(教师让另一组展示自己平均分成16份后拼成的图形。)
师:和前两次拼成的图形比,又有什么变化?
师:如果要让拼成的图形比它还接近平行四边形,怎么办?
师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)
师:把这圆平均分了64份,看拼成新的图形呢?
推荐访问:教学设计 面积 圆的面积教学设计一等奖 圆的面积教学设计及设计意图 圆的面积教学设计与反思 人教版圆的面积教学设计 六年级数学圆的面积教学设计 小学圆的面积教学设计 北师大版六年级数学圆的面积教学设计 青岛版圆的面积教学设计 圆的面积教学设计方案 圆的面积教学设计的精彩导入